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Some questions...

How scalable is Gnutella?

How robust is Gnutella?

Why does FreeNet work?

What would an ideal (unstructured)
P2P system look like?

What is do the overlay networks
of existing (unstructured)
P2P systems look like?

Gnutella snapshot, 2000
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Scalability of Gnutella: quick answer

« Bandwidth Generated in Bytes (Message 83 bytes)
- Searching for a 18 byte string

T=2 T=3 T=4 T=5 T=6 T=7 T=8
N=2 332 498 664 830 99 1,162 1,328
N=3 747] 1,743 3,735 7,719 15,687 31,623 63,495
N=4 1,328] 4316 13,280 40,172 120,848 362,876 1,088,960
N=5 2,075 8715 35,275 141,515 566,475 2,266,315 9,065,675
N=6 2,988 15438] 77,688 388,938 1,945,188 9,726,438 48,632,688
N=7 4,067 24983 150,479 903,455 5,421,311 | 35,528,447 | 192,171,263
N=8 5312| 37,848 262,600 1,859,864 | 13,019,712 91,138,648 | 637,971,200

- N = number of connections open

- T = number of hops ‘Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.
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Graphs

« Rigorous analysis of P2P systems: based on graph theory
- Refresher of graph theory needed

« First: graph families and models
- Random graphs
- Small world graphs
- Scale-free graphs

« Then: graph theory and P2P
- How are the graph properties reflected in real systems?
« Users (peers) are represented by vertices in the graph
« Edges represent connections in the overlay (routing table entries)

« Concept of self-organization
- Network structures emerge from simple rules
- E.g. also in social networks, www, actors playing together in movies
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What Is a Graph?

« Definition of a graph:
Graph G = (V, E) consists of two finite sets, set V of vertices (nodes)
and set E of edges (arcs) for which the following applies:
1. If e e E, then exists (v, u) e VxV, suchthatve eandu € e
2. If e e E and above (v, u) exists, and further for (x, y) € V x V applies
x eeandy e e, then {v, u} = {x, y}

G

Example graph with
4 vertices and 5 edges
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Properties of Graphs

An edge e € E is directed if the start and end vertices in condition 2
above are identical: v=xandy =u

An edge e € E is undirected if v=xand y = u as well as v =y and
u = x are possible

A graph G is directed (undirected) if the above property holds for all
edges

A loop is an edge with identical endpoints

Graph G, = (V,, E,) is a subgraph of G = (V, E), if V, cVand E, c E
(such that conditions 1 and 2 are met)
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Important Types of Graphs

Vertices v, u e V are connected if there is a path from v to u: (v, v,),
(V2 V3)s oy (Vi U) € E

Graph G is connected if all v, u € V are connected

Undirected, connected, acyclic graph is called a tree
- Sidenote: Undirected, acyclic graph which is not connected is called a forest

Directed, connected, acyclic graph is also called DAG
- DAG = Directed Acyclic Graph (connected is assumed)

An induced graph G(V¢) = (Ve, E;) is a graph V¢ <V and with edges
Ec=fe=@.0)11.JeVd

An induced graph is a component if it is connected
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Vertex Degree

« Ingraph G = (V, E), the degree of vertex v e V is the total number of
edges (v, u) e Eand (u, V) € E
- Degree is the number of edges which touch a vertex

« For directed graph, we distinguish between in-degree and out-degree
- In-degree is number of edges coming to a vertex
- Out-degree is number of edges going away from a vertex

« The degree of a vertex can be obtained as:
- Sum of the elements in its row in the incidence matrix
- Length of its vertex incidence list
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Important Graph Metrics

Distance: d(v, u) between vertices v and u is the
length of the shortest path between v and u

Average path length: Sum of the distances over all
pairs of nodes divided by the number of pairs

Diameter: d(G) of graph G is the maximum of
d(v, u) forallv,u eV

Order: the number of vertices in a graph

Clustering coefficient: number of edges between neighbors
divided by maximum number of edges between them
- k neighbors: k(k-1)/2 possible edges between them

C(i) = 2'E ( N'(I)) E(glg(;\)&:rsnz;nlber of edges between &4
d(i)d(i)-1 d(i) = degree of i Source: Wikipedia
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Random Graphs

« Random graphs are first widely studied graph family
- Many P2P networks choose neighbors more or less randomly

« Two different notations generally used:
- Erdds and Renyi
- Gilbert (we will use this)

« Gilbert’s definition: Graph G, , (with n nodes) is a graph where the
probability of an edge e = (v, w) is p

Construction algorithm:

« For each possible edge, draw a random number

« If the number is smaller than p, then the edge exists
« p can be function of n or constant
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Basic Results for Random Graphs

Giant Connected Component

Let ¢ > 0 be a constant and p = ¢/n. If ¢ < 1 every component of G, ; has order
O(log N) with high probability. If ¢ > 1 then there will be one component of
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All other components
have size O(log N)

In plain English: Giant connected component emerges with high probability
when average degree is about 1

.

Node degree distribution
« If we take a random node, how high is the probability P(k) that it has degree k?
« Node degree is Poisson distributed c"e‘°

- Parameter c = expected number of occurrences P (k) =

k!

Clustering coefficient

« Clustering coefficient of a random graph is asymptotically equal to p with high
probability
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Random Graphs: Summary
« Before random graphs, regular graphs were popular
- Regular: Every node has same degree
« Random graphs have two advantages over regular graphs
1. Many interesting properties analytically solvable

2. Much better for applications, e.g., social networks

« Note: Does not mean social networks are random graphs; just that the
properties of social networks are well-described by random graphs

«  Question: How to model networks with local clusters and small
diameter?

« Answer: Small-world networks
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Six Degrees of Separation

Famous experiment from 1960’s (S. Milgram)

Send a letter to random people in Kansas and Nebraska and ask
people to forward letter to a person in Boston
- Person identified by name, profession, and city

Rule: Give letter only to people you know by first name and ask them
to pass it on according to same rule
- Some letters reached their goal

Letter needed six steps on average to reach the person

Graph theoretically: Social networks have dense local structure, but
(apparently) small diameter

- Generally referred to as “small world effect”

- Usually, small number of persons act as “hubs”
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Small-World Networks

« Developed/discovered by Watts and Strogatz (1998)
- Over 30 years after Milgram’s experiment!

« Watts and Strogatz looked at three networks
- Film collaboration between actors, US power grid, Neural network of worm C. elegans

« Measured characteristics:
- Clustering coefficient as a measure for ‘regularity’, or ‘locality of the network
« If it is high, edges are rather build between neighbors than between far away nodes
- The average path length between vertices

« Result
- Most real-world networks have a high clustering coefficient
(0.3-0.4), but nevertheless a low average path length

« Grid-like networks:

- High clustering coefficient = high average path length
(edges are not ‘random®, but rather ‘local’)
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Constructing Small-World Graphs

« Put all n nodes on a ring, number them consecutively from 1 to n
« Connect each node with its k clockwise neighbors
« Traverse ring in clockwise order

« For every edge
- Draw random number r

- If r < p, then re-wire edge by selecting a random target node from the
set of all nodes (no duplicates)

- Otherwise keep old edge

« Different values of p give different graphs
- If pis close to 0, then original structure mostly preserved
- If pis close to 1, then new graph is random
- Interesting things happen when p is somewhere in-between

Uni Innsbruck Informatik - 14

Milgram's Small World Experiment

COMMUNICATIO|
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Small-World Networks and Random Graphs

* Results
- Compared to a random graph with same number of nodes
- Diameters similar, slightly higher for real graph
- Clustering coefficient orders of magnitude higher

« Definition of small-worlds network

- Dense local clustering structure and small diameter comparable to that
of a same-sized random graph

I (real) ! D frandom) | Cfreal) | C{random)

Film collaboration 3.65 0.79 0.00027

Power grid 187 0.08 0,005

€ elegans 2.25 .28 0.05
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Regular, Small-World, Random

Regular Small-World Random

.

p=0
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Problems with Small-World Graphs

Small-world graphs explain why:

« Highly clustered graphs can have short average path lengths
(“short cuts”)

Small-world graphs do NOT explain why:
« This property emerges in real networks
- Real networks are practically never ring-like

Further problem with small-world graphs:
« Nearly all nodes have same degree

« Not true for random graphs

« What about real networks?
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Internet

« Faloutsos et al. study from 99: Internet topology examined in 1998

- AS-level topology, during 1998 Internet grew 45%
SKITTER

« Motivation: -
What does the Internet look like? i
- Are there any topological properties that don’t
change over time?
- How to gemerate Internet-like graphs
for simulations?

« 4 key properties found,

each follows a power-law;

Sort nodes according to their (out)degree
. Outdegree of a node is proportional to its rank to the power of a constant
Number of nodes with same outdegree is proportional to the outdegree to the
power of a constant
. Eigenvalues of a graph are proportional to the order to the power of a constant

. Total number of pairs of nodes within a distance d is proportional to d to the
power of a constant

N e

~w
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World Wide Web

« Links between documents in the World Wide Web
- 800 Mio. documents investigated (S. Lawrence, 1999)

« What was expected so far?
- Number of links per web page: (k) - 6
- Number of pages in the WWW: Ny ~ 10°

E I - Probability “page has 500 links”:
- P(k=500) - 10

B had - Number of pages with 500 links:
¥ N(k=500) ~ 109

L
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WWW: result of investigation

P(page has k links) P(k pages link to this page)
10°
o % T=21
\?\u
i‘v; o* N
% 10"10" 10" 1]?1 10° ° 10*
Pou(k) ~kvout Pin(k) ~kvin
P(k=500) ~ 106 Nyw ~ 10° - N(k=500) ~ 103
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Power Law Networks

Also known as scale-free networks

“Power Law” relationship for Web pages
- The probability P(k) that a page has k links (or k other pages link to this
page) is proportional to the number of links k to the power of y

General "Power Law” Relationships

- A certain characteristic k is - independent of the growth of the system -
always proportional to k2, whereby a is a constant (often -2 < a < -4)

Power laws very common (“natural”)
- and power law networks exhibit small-world-effect
- E.g. WWW: 19 degrees of separation
(R. Albert et al, Nature (99); S. Lawrence et al, Nature (99))
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Examples for Power Law Networks

Economics
- Pareto: income distribution
(common simplification: 20% of population own 80% of the wealth)
- Standardized price returns on individual stocks or stock indices

- Sizes of companies and cities (Zipf’s law) _
Human networks

- professional (e.g. collaborations between actors, scientists)
- social (friendship, acquaintances)
- Sexual-contact networks

Many other natural occurrences
- Distribution of English words (Zipf’s law again)
- Areas burnt in forest fires
- Meteor impacts on the moon

Internet also follows some power laws
- Popularity of Web pages (possibly related to Zipf’s law for English words?)
- Connectivity of routers and Autonomous Systems
- Gnutella’s topology!
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Barabasi-Albert-Model

« How do power law networks emerge?

In a network where new vertices (nodes) are added and new nodes tend to
connect to well-connected nodes, the vertex connectivities follow a power-law

+  Barabasi-Albert-Model: power-law network is constructed with two rules
1. Network grows in time
2. New node has preferences to whom it wants to connect

« Preferential connectivity modeled as
- Each new node wants to connect to m other nodes

Probability that an existing node j gets one of the m connections is proportional
to its degree d(j)

« New nodes tend to connect to well-connected nodes

«  Another way of saying this: “the rich get richer”
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Copying model

« Alternative generative model (R. Kumar, P. Raghavan, et al. 2000)
- In each time step randomly copy one of the existing nodes keeping all its links
- Connect the original node and the copy

- Then randomly remove edges from both nodes with a very small probability,
and for each removed edge randomly draw new target nodes

« In this model the probability of node v getting a new edge in some time
step is proportional to its degree at that time
- The more edges it has, the more likely it is
that one of its neighbors is chosen for o)e o
copying in the next time step o 0RO o

« In contrast to random networks, N\ S| & o
scale-free networks show a small y . ¥
number of well-connected hubs and
many nodes with few connections

(a) Random network. (b) Scale-free network
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Robustness of Scale Free Networks

Experiment: take network of 10000 nodes (random and power-law) and
remove nodes randomly

Random graph:
- Take out 5% of nodes: Biggest component 9000 nodes

- Take out 18% of nodes: No biggest component, all components between 1 and 100
nodes

- Take out 45% of nodes: Only groups of 1 or 2 survive

Power-law graph:
- Take out 5% of nodes: Only isolated nodes break off
- Take out 18% of nodes: Biggest component 8000 nodes
- Take out 45% of nodes: Large cluster persists, fragments small

Networks with power law exponent < 3 are very robust
against random node failures
- ONLY true for random failures!
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Robustness of Scale-Free Networks /2

« Robustness against random failures = important property of networks with scale-
free degree distribution

- Remove a randomly chosen vertex v from a scale-free network: with high probability,
it will be a low-degree vertex and thus the damage to the network will not be high

«  But scale-free networks are very sensitive against attacks

- If a malicious attacker removes the highest degree vertices first,
the network will quickly decompose in very small components

« Note: random graphs are not robust against random failures, but not sensitive

against attacks either (because all vertices more or less have the same degree)

-— -
Failure N
of nodes
"
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Robustness of Scale-Free Networks /3

« Random failures vs. directed attacks

L TP

Random Graph .Power Law* Graph
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Kleinberg’s Small-World Navigability Model

« Small-world model and power law explain why short paths exist

« Missing piece in the puzzle: why can we find these paths?
- Each node has only local information
- Even if a short cut exists, how do people know about it?
- Milgram’s experiment:
« Some additional information (profession, address, hobbies etc.) is used to
decide which neighbor is “closest” to recipient
» results showed that first steps were the largest

« Kleinberg’s Small-World Model
- Set of points in an n x n grid
- Distance is the number of “steps” separating points
< dGi ) = -0+ 1yi-yl

« Construct graph as follows:
- Every node i is connected to node j within distance q

- For every node i, additional q edges are added. Probability that node j is selected
is proportional to d(i, j)*, for some constant r
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Navigation in Kleinberg’s Model

« Simple greedy routing: nodes only know local links and target position,
always use the link that brings message closest to target
- If r=2, expected lookup time is O(log2n)
- If r=2, expected lookup time is O(n¢), where € depends on r

« Can be shown: Number of messages needed is proportional to O(log n) iff r=s
(s = number of dimensions)
- Idea behind proof: for any r < s there are too few random edges to make paths short
- For r > s there are too many random edges => too many choices for passing message
« The message will make a (long) random walk through the network

« Kleinberg small worlds thus provide a way of building a peer-to-peer overlay
network, in which a very simple, greedy and local routing protocol is applicable
- Practical algorithm: Forward message to contact who is closest to target
- Assumes some way of associating nodes with points in grid (know about “closest”)
- Compare with CAN DHT (later)
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Gnutella

100a0

Mades flog sals)

Links (hog scale)

Node degrees in Gnutella follow Power-Law rule
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Summary

The network structure of a peer-to-peer system influences:
- average necessary number of hops (path length)
- possibility of greedy, decentralized routing algorithms
- stability against random failures

sensitivity against attacks

redundancy of routing table entries (edges)

- many other properties of the system build onto this network

Important measures of a network structure are:
- average path length

- clustering coefficient

- the degree distribution

Next: how to build systems based on edge generation rules such that a
network structure arises supporting the desired properties of the system
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Unstructured P2P Networks

«  What do real (unstructured) Peer-to-Peer Networks look like?

«  Depends on the protocols used
- It has been found that some peer-to-peer networks, e.g., Freenet, evolve voluntarily
in a small-world with a high clustering coefficient and a small diameter
- Analogously, some protocols, e.g., Gnutella, will implicitly generate a scale-free
degree distribution

« Case study: Gnutella network

«  How does the Gnutella network evolve?
- Nodes with high degree answer more likely to Ping messages
- Thus, they are more likely chosen as neighbor
- Host caches always/often provide addresses of well connected nodes
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Gnutella /2

Network diameter stagled nearly constant, though the network grew by
one order of magnitude

Robustness
- Remember: we said that networks with power law exponent < 3 are very
robust against random node failures
- In Gnutella’s case, the exponent is 2.3

Theoretical experiment
- Subset of Gnutella with 1771 nodes
- Take out random 30% of nodes, network still survives
- Take out 4% of best connected nodes, network splinters

For more information on Gnutella, see:
- Matei Ripeanu, Adriana lamnitchi, lan Foster: Mapping the Gnutella Network, IEEE
Internet Computing, Jan/Feb 2002
- Zeinalipour-Yazti, Folias, Faloutsos, “A Quantitative Analysis of the Gnutella Network
Traffic”, Tech. Rep. May 2002




