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SomeSome questionsquestions......

• How scalable is Gnutella?

• How robust is Gnutella?

• Why does FreeNet work?

• What would an ideal (unstructured)
P2P system look like?

• What is do the overlay networks
of existing (unstructured)
P2P systems look like?

Gnutella snapshot, 2000
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Scalability of Gnutella: quick answerScalability of Gnutella: quick answer

• Bandwidth Generated in Bytes (Message 83 bytes) 
– Searching for a 18 byte string 

– N = number of connections open
– T  = number of hops 

63,49531,62315,6877,7193,7351,743747N=3

1,3281,162996830664498332N=2

9,065,6752,266,315566,475141,51535,2758,7152,075N=5

1,088,960362,876120,84840,17213,2804,3161,328N=4

192,171,26335,528,4475,421,311903,455150,47924,9834,067N=7

48,632,6889,726,4381,945,188388,93877,68815,4382,988N=6

262,600

T=4

37,848

T=3

5,312

T=2

N=8 637,971,20091,138,64813,019,7121,859,864

T=8T=7T=6T=5

Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.
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GraphsGraphs

• Rigorous analysis of P2P systems: based on graph theory
– Refresher of graph theory needed

• First: graph families and models
– Random graphs
– Small world graphs
– Scale-free graphs

• Then: graph theory and P2P
– How are the graph properties reflected in real systems?

• Users (peers) are represented by vertices in the graph
• Edges represent connections in the overlay (routing table entries)

• Concept of self-organization
– Network structures emerge from simple rules
– E.g. also in social networks, www, actors playing together in movies

Uni Innsbruck Informatik Uni Innsbruck Informatik -- 55

What Is a Graph?What Is a Graph?

• Definition of a graph:
Graph G = (V, E) consists of two finite sets, set V of vertices (nodes) 
and set E of edges (arcs) for which the following applies:
1. If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e
2. If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V applies

x ∈ e and y ∈ e, then {v, u} = {x, y}

1 2

3

4
e2

e1

e3

e5 e4
Example graph with
4 vertices and 5 edges
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Properties of GraphsProperties of Graphs

• An edge e ∈ E is directed if the start and end vertices in condition 2 
above are identical: v = x and y = u

• An edge e ∈ E is undirected if v = x and y = u as well as v = y and 
u = x are possible

• A graph G is directed (undirected) if the above property holds for all 
edges

• A loop is an edge with identical endpoints

• Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and E1 ⊆ E 
(such that conditions 1 and 2 are met)
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Important Types of GraphsImportant Types of Graphs

• Vertices v, u ∈ V are connected if there is a path from v to u: (v, v2), 
(v2, v3), …, (vk-1, u) ∈ E

• Graph G is connected if all v, u ∈ V are connected

• Undirected, connected, acyclic graph is called a tree
– Sidenote: Undirected, acyclic graph which is not connected is called a forest

• Directed, connected, acyclic graph is also called DAG
– DAG = Directed Acyclic Graph (connected is assumed)

• An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and with edges
EC = {e = (i, j) | i, j ∈ VC}

• An induced graph is a component if it is connected
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Vertex DegreeVertex Degree

• In graph G = (V, E), the degree of vertex v ∈ V is the total number of 
edges (v, u) ∈ E and (u, v) ∈ E
– Degree is the number of edges which touch a vertex

• For directed graph, we distinguish between in-degree and out-degree
– In-degree is number of edges coming to a vertex
– Out-degree is number of edges going away from a vertex

• The degree of a vertex can be obtained as: 
– Sum of the elements in its row in the incidence matrix 
– Length of its vertex incidence list
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Important Graph MetricsImportant Graph Metrics

• Distance: d(v, u) between vertices v and u is the
length of the shortest path between v and u

• Average path length: Sum of the distances over all
pairs of nodes divided by the number of pairs

• Diameter: d(G) of graph G is the maximum of
d(v, u) for all v, u ∈ V

• Order: the number of vertices in a graph

• Clustering coefficient: number of edges between neighbors
divided by maximum number of edges between them
– k neighbors: k(k-1)/2 possible edges between them
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E(N(i)) = number of edges between
neighbors of i
d(i) = degree of i Source: Wikipedia
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Random GraphsRandom Graphs

• Random graphs are first widely studied graph family
– Many P2P networks choose neighbors more or less randomly

• Two different notations generally used:
– Erdös and Renyi
– Gilbert (we will use this)

• Gilbert’s definition: Graph Gn,p (with n nodes) is a graph where the 
probability of an edge e = (v, w) is p

Construction algorithm:
• For each possible edge, draw a random number
• If the number is smaller than p, then the edge exists
• p can be function of n or constant
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Basic Results for Random GraphsBasic Results for Random Graphs

Giant Connected Component
Let c > 0 be a constant and p = c/n. If c < 1 every component of Gn,p has order 
O(log N) with high probability. If c > 1 then there will be one component of 
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All other components 
have size O(log N)

• In plain English: Giant connected component emerges with high probability 
when average degree is about 1

Node degree distribution
• If we take a random node, how high is the probability P(k) that it has degree k?
• Node degree is Poisson distributed

– Parameter c = expected number of occurrences

Clustering coefficient
• Clustering coefficient of a random graph is asymptotically equal to p with high 

probability

  
P(k) =

cke−c

k!
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Random Graphs: SummaryRandom Graphs: Summary

• Before random graphs, regular graphs were popular
– Regular: Every node has same degree

• Random graphs have two advantages over regular graphs
1. Many interesting properties analytically solvable
2. Much better for applications, e.g., social networks

• Note: Does not mean social networks are random graphs; just that the 
properties of social networks are well-described by random graphs

• Question: How to model networks with local clusters and small 
diameter?

• Answer: Small-world networks
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Six Degrees of SeparationSix Degrees of Separation

• Famous experiment from 1960’s (S. Milgram)

• Send a letter to random people in Kansas and Nebraska and ask 
people to forward letter to a person in Boston
– Person identified by name, profession, and city

• Rule: Give letter only to people you know by first name and ask them 
to pass it on according to same rule
– Some letters reached their goal

• Letter needed six steps on average to reach the person

• Graph theoretically: Social networks have dense local structure, but 
(apparently) small diameter
– Generally referred to as “small world effect”
– Usually, small number of persons act as “hubs”
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Milgram'sMilgram's Small World ExperimentSmall World Experiment
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SmallSmall--World NetworksWorld Networks

• Developed/discovered by Watts and Strogatz (1998)
– Over 30 years after Milgram’s experiment!

• Watts and Strogatz looked at three networks
– Film collaboration between actors, US power grid, Neural network of worm C. elegans

• Measured characteristics:
– Clustering coefficient as a measure for ‘regularity‘, or ‘locality‘ of the network 

• If it is high, edges are rather build between neighbors than between far away nodes
– The average path length between vertices

• Result
– Most real-world networks have a high clustering coefficient

(0.3-0.4), but nevertheless a low average path length

• Grid-like networks: 
– High clustering coefficient ⇒ high average path length

(edges are not ‘random‘, but rather ‘local‘)
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SmallSmall--World Networks and Random GraphsWorld Networks and Random Graphs

• Results
– Compared to a random graph with same number of nodes
– Diameters similar, slightly higher for real graph
– Clustering coefficient orders of magnitude higher

• Definition of small-worlds network
– Dense local clustering structure and small diameter comparable to that 

of a same-sized random graph
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Constructing SmallConstructing Small--World GraphsWorld Graphs

• Put all n nodes on a ring, number them consecutively from 1 to n

• Connect each node with its k clockwise neighbors

• Traverse ring in clockwise order

• For every edge
– Draw random number r
– If r < p, then re-wire edge by selecting a random target node from the 

set of all nodes (no duplicates)
– Otherwise keep old edge

• Different values of p give different graphs
– If p is close to 0, then original structure mostly preserved
– If p is close to 1, then new graph is random
– Interesting things happen when p is somewhere in-between
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Regular, SmallRegular, Small--World, RandomWorld, Random

Regular Small-World Random

p = 0 p = 1
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Problems with SmallProblems with Small--World GraphsWorld Graphs

Small-world graphs explain why:
• Highly clustered graphs can have short average path lengths

(“short cuts”)

Small-world graphs do NOT explain why:
• This property emerges in real networks

– Real networks are practically never ring-like

Further problem with small-world graphs:
• Nearly all nodes have same degree
• Not true for random graphs
• What about real networks?
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InternetInternet

• Faloutsos et al. study from 99: Internet topology examined in 1998
– AS-level topology, during 1998 Internet grew 45%

• Motivation:
– What does the Internet look like?
– Are there any topological properties that don’t

change over time?
– How to gemerate Internet-like graphs

for simulations?

• 4 key properties found,
each follows a power-law;
Sort nodes according to their (out)degree
1. Outdegree of a node is proportional to its rank to the power of a constant
2. Number of nodes with same outdegree is proportional to the outdegree to the 

power of a constant
3. Eigenvalues of a graph are proportional to the order to the power of a constant
4. Total number of pairs of nodes within a distance d is proportional to d to the 

power of a constant
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World Wide WebWorld Wide Web

• Links between documents in the World Wide Web
– 800 Mio. documents investigated (S. Lawrence, 1999)

• What was expected so far?
– Number of links per web page: 〈k〉 ~ 6
– Number of pages in the WWW: NWWW ~ 109

– Probability “page has 500 links”:
P(k=500) ~ 10-99

– Number of pages with 500 links:
N(k=500) ~ 10-90
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Pout(k)  ~ k- γ out

P(k=500) ~ 10-6

γout= 2.45 γ in  = 2.1

Pin(k)  ~ k- γ in

NWWW ~ 109 N(k=500) ~ 103

WWW: result of investigation WWW: result of investigation 

P(page has k links) P(k pages link to this page)
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Power Law NetworksPower Law Networks

• Also known as scale-free networks

• “Power Law” relationship for Web pages
– The probability P(k) that a page has k links (or k other pages link to this 

page) is proportional to the number of links k to the power of y

• General ”Power Law” Relationships
– A certain characteristic k is – independent of the growth of the system –

always proportional to ka, whereby a is a constant (often -2 < a < -4)

• Power laws very common (“natural”)
– and power law networks exhibit small-world-effect
– E.g. WWW: 19 degrees of separation

(R. Albert et al, Nature (99); S. Lawrence et al, Nature (99))
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Examples for Power Law NetworksExamples for Power Law Networks

• Economics
– Pareto: income distribution

(common simplification: 20% of population own 80% of the wealth)
– Standardized price returns on individual stocks or stock indices
– Sizes of companies and cities (Zipf’s law)

• Human networks
– professional (e.g. collaborations between actors, scientists)
– social (friendship, acquaintances)
– Sexual-contact networks

• Many other natural occurrences
– Distribution of English words (Zipf’s law again)
– Areas burnt in forest fires
– Meteor impacts on the moon

• Internet also follows some power laws
– Popularity of Web pages (possibly related to Zipf’s law for English words?)
– Connectivity of routers and Autonomous Systems
– Gnutella’s topology!

Pareto, Zipf distributions
are the same (converted)
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BarabasiBarabasi--AlbertAlbert--ModelModel

• How do power law networks emerge?
– In a network where new vertices (nodes) are added and new nodes tend to 

connect to well-connected nodes, the vertex connectivities follow a power-law 

• Barabasi-Albert-Model: power-law network is constructed with two rules
1. Network grows in time
2. New node has preferences to whom it wants to connect

• Preferential connectivity modeled as
– Each new node wants to connect to m other nodes
– Probability that an existing node j gets one of the m connections is proportional 

to its degree d(j)

• New nodes tend to connect to well-connected nodes

• Another way of saying this: “the rich get richer”
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CopyingCopying modelmodel

• Alternative generative model (R. Kumar, P. Raghavan, et al. 2000)
– In each time step randomly copy one of the existing nodes keeping all its links
– Connect the original node and the copy
– Then randomly remove edges from both nodes with a very small probability, 

and for each removed edge randomly draw new target nodes 

• In this model the probability of node v getting a new edge in some time 
step is proportional to its degree at that time
– The more edges it has, the more likely it is

that one of its neighbors is chosen for
copying in the next time step

• In contrast to random networks,
scale-free networks show a small
number of well-connected hubs and
many nodes with few connections
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Robustness of Scale Free NetworksRobustness of Scale Free Networks

• Experiment: take network of 10000 nodes (random and power-law) and 
remove nodes randomly

• Random graph:
– Take out 5% of nodes: Biggest component 9000 nodes
– Take out 18% of nodes: No biggest component, all components between 1 and 100 

nodes
– Take out 45% of nodes: Only groups of 1 or 2 survive

• Power-law graph:
– Take out 5% of nodes: Only isolated nodes break off
– Take out 18% of nodes: Biggest component 8000 nodes
– Take out 45% of nodes: Large cluster persists, fragments small

• Networks with power law exponent < 3 are very robust
against random node failures
– ONLY true for random failures!
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• Robustness against random failures = important property of networks with scale-
free degree distribution
– Remove a randomly chosen vertex v from a scale-free network: with high probability, 

it will be a low-degree vertex and thus the damage to the network will not be high

• But scale-free networks are very sensitive against attacks
– If a malicious attacker removes the highest degree vertices first, 

the network will quickly decompose in very small components 

• Note: random graphs are not robust against random failures, but not sensitive 
against attacks either (because all vertices more or less have the same degree)

Robustness of ScaleRobustness of Scale--Free Networks /2Free Networks /2

Failure
of nodes
Failure

of nodes
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Robustness of ScaleRobustness of Scale--Free Networks /3Free Networks /3

• Random failures vs. directed attacks

Random Graph „Power Law“ Graph
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KleinbergKleinberg’’s Smalls Small--World Navigability ModelWorld Navigability Model

• Small-world model and power law explain why short paths exist

• Missing piece in the puzzle: why can we find these paths?
– Each node has only local information
– Even if a short cut exists, how do people know about it?
– Milgram’s experiment:

• Some additional information (profession, address, hobbies etc.) is used to 
decide which neighbor is “closest” to recipient

• results showed that first steps were the largest

• Kleinberg’s Small-World Model
– Set of points in an n x n grid
– Distance is the number of “steps” separating points

• d(i, j) = |xi - xj| + |yi - yj|

• Construct graph as follows:
– Every node i is connected to node j within distance q
– For every node i, additional q edges are added. Probability that node j is selected 

is proportional to d(i, j)-r, for some constant r
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Navigation in KleinbergNavigation in Kleinberg’’s Models Model

• Simple greedy routing: nodes only know local links and target position,
always use the link that brings message closest to target
– If r=2, expected lookup time is  O(log2n)
– If r≠2, expected lookup time is O(nε), where ε depends on r

• Can be shown: Number of messages needed is proportional to O(log n) iff r=s
(s = number of dimensions)
– Idea behind proof: for any r < s there are too few random edges to make paths short
– For r > s there are too many random edges ⇒ too many choices for passing message

• The message will make a (long) random walk through the network

• Kleinberg small worlds thus provide a way of building a peer-to-peer overlay 
network, in which a very simple, greedy and local routing protocol is applicable
– Practical algorithm: Forward message to contact who is closest to target
– Assumes some way of associating nodes with points in grid (know about “closest”)
– Compare with CAN DHT (later)
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Unstructured P2P NetworksUnstructured P2P Networks

• What do real (unstructured) Peer-to-Peer Networks look like?

• Depends on the protocols used
– It has been found that some peer-to-peer networks, e.g., Freenet, evolve voluntarily 

in a small-world with a high clustering coefficient and a small diameter

– Analogously, some protocols, e.g., Gnutella, will implicitly generate a scale-free 
degree distribution

• Case study: Gnutella network

• How does the Gnutella network evolve?
– Nodes with high degree answer more likely to Ping messages
– Thus, they are more likely chosen as neighbor
– Host caches always/often provide addresses of well connected nodes
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GnutellaGnutella

Node degrees in Gnutella follow Power-Law rule
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GnutellaGnutella /2/2

• Network diameter stayed nearly constant, though the network grew by 
one order of magnitude

• Robustness
– Remember: we said that networks with power law exponent < 3 are very 

robust against random node failures
– In Gnutella’s case, the exponent is 2.3

• Theoretical experiment
– Subset of Gnutella with 1771 nodes
– Take out random 30% of nodes, network still survives
– Take out 4% of best connected nodes, network splinters

• For more information on Gnutella, see:
– Matei Ripeanu, Adriana Iamnitchi, Ian Foster: Mapping the Gnutella Network, IEEE

Internet Computing, Jan/Feb 2002
– Zeinalipour-Yazti, Folias, Faloutsos, “A Quantitative Analysis of the Gnutella Network

Traffic”, Tech. Rep. May 2002
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SummarySummary

• The network structure of a peer-to-peer system influences:
– average necessary number of hops (path length)
– possibility of greedy, decentralized routing algorithms
– stability against random failures
– sensitivity against attacks
– redundancy of routing table entries (edges)
– many other properties of the system build onto this network

• Important measures of a network structure are:
– average path length
– clustering coefficient 
– the degree distribution

• Next: how to build systems based on edge generation rules such that a
network structure arises supporting the desired properties of the system


